Governance in Silico: Experimental Sandbox for Policymaking over AI Agents

Denisa Reshef Kera
Bar Ilan University, Israel

Eilat Navon
Bar Ilan University, Israel

Galit Wellner
Holon Institute of Technology, Israel

Frantisek Kalvas
University of West Bohemia, Czech Republic

Follow this and additional works at: https://dl.designresearchsociety.org/drs-conference-papers

Part of the Art and Design Commons

Citation

This Research Paper is brought to you for free and open access by the DRS Conference Proceedings at DRS Digital Library. It has been accepted for inclusion in DRS Biennial Conference Series by an authorized administrator of DRS Digital Library. For more information, please contact dl@designresearchsociety.org.
Governance in silico: Experimental sandbox for policymaking over AI Agents

Denisa Reshef Kera*, Elat Navonb, Galit Wellnerc, František Kalvasd

aDesign & Policy lab, Bar-Ilan University, Israel
bScience, Technology and Society program, Bar-Ilan University, Israel
cHolon Institute of Technology, Israel
dDepartment of Sociology, University of West Bohemia, Czech Republic

*Corresponding email: denisa.reshef@biu.ac.il

doi.org/10.21606/drs.2024.200

Abstract: The concept of 'governance in silico' summarizes and questions the various design and policy experiments with synthetic data and content in public policy, such as synthetic data simulations, AI agents, and digital twins. While it acknowledges the risks of AI-generated hallucinations, errors, and biases, often reflected in the parameters and weights of the ML models, it focuses on the prompts. Prompts enable stakeholder negotiation and representation of diverse agendas and perspectives that support experimental and inclusive policymaking. To explore the prompts' engagement qualities, we conducted a pilot study on co-designing AI agents for negotiating contested aspects of the EU Artificial Intelligence Act (EU AI Act). The experiments highlight the value of an 'exploratory sandbox' approach, which fosters political agency through direct representation over AI agent simulations. We conclude that such 'governance in silico' exploratory approach enhances public consultation and engagement and presents a valuable alternative to the frequently overstated promises of evidence-based policy.

Keywords: EU AI Act; regulatory sandbox; exploratory sandbox; AI agents; synthetic agents; public engagement; participatory design

1. Introduction

The concept of 'governance in silico' summarizes the recent trends of integrating design experiments with emergent machine learning (ML) technologies in policy making. From synthetic data and AI agents created by what is commonly described as generative or general purpose AIs (GAIs) (Karpathy et al., 2016) to various computational models, we are promised evidence-based policy often focused of prediction and automation. However, a major challenge is the lack of political agency and the related difficulty in disputing these models due to interpretability and explainability (Bell et al., 2022; Coyle & Weller, 2020; Kasun Amara-
singhe et al., 2020; Nannini et al., 2023). Incorporating ML design experiments, especially synthetic data and content, into agenda settings, negotiations of regulations, decision-making, and evaluation (Craglia et al., 2021; Gal & Lyskey, 2023; Jenkins, 2023; Raghunathan, 2021) thus raises concerns about opaque and arbitrary decision-making.

For example, synthetic data in urban planning - various virtual replicas of cities, neighborhoods, and buildings – show both the potential and limits of such 'governance in silico' decision-making (Bennett et al., 2023; Papyshiev & Yarime, 2021). The combination of real time and synthetic data offers a possibility to balance the promises of evidence-based prediction with empirical control, but even this will not solve the issue of data justice, bias, or accountability (Ananny & Crawford, 2018; Danaher et al., 2017; D’ignazio & Klein, 2020, 2020; Gillespie, 2013; Introna, 2016), which we claim depend on design that explicitly addresses political agency and representation.

The problem with the experimental design turn in recent policymaking, discussed here as ‘governance in silico,’ is that it prioritizes technocratic promises of predictability and automation over the messy notions of human agency, autonomy, and dignity (which are issues of political agency and representation). To support political representation and agency in design and policy experiments, we have to go beyond claims of human oversight, transparency, including supposed human-centeredness of the technology (Barmer et al., 2021; Calo, 2017; Gillies et al., 2016; Henman, 2020). The efficient, data-driven insights generated over AI must support diverse perspectives and stakeholder engagements that define the political stakes and interests of the affected parties in the real and synthetic ‘worlds’.

To explore the potential for integrating political representation and agency in synthetic content and data, we leveraged the capabilities of Generative Artificial Intelligence (GAI) to simulate demographic and behavioral data through AI agents. By conducting pilot studies of AI agent simulations of stakeholder participation and representation based on engagement, we demonstrated the importance of human values such as agency, autonomy, and dignity alongside the technological pursuit of predictability and automation.

The resulting participatory 'governance in silico' experiments rely on AI agents designed by the stakeholders to represent their demographic or interest groups and simulate a wide range of societal needs and values. These design and policy experiments follow the existing design and policy scholarship and practice (Blomkamp, 2018; Checkland et al., 2023; De Smedt & Borch, 2022; Kimbell et al., 2023; Kimbell & Bailey, 2017) that emphasizes testing, prototyping, and similar engagements as essential for democracy. The "new spirit of policymaking" as described by Kimbell and Bailey (2017) supports a pragmatic and holistic approach that mobilizes stakeholders along the technologies to respond to possible conflicts and r ambiguity in the policy processes.

The experimental design-based practices for policy are part of an emerging trend of regulatory sandboxes, another example of policy innovation and implementation (Allen, 2019; Gromova, 2020). Whether as a test, prototype, pilot, or a sandbox, ‘governance in silico’
emphasizes the importance of representing the agency of the stakeholders in evaluating the feasibility, cost, risk, and adverse effects associated with policy and innovation.

In the following chapters, we will describe the method used to design the AI agents, discuss the initial pilot, and explain why we believe that such simulations should be part of a regulatory sandbox. The exploratory sandbox for interaction between synthetic agents and real stakeholders critically evaluates the AI generated content which is also co-designed over the prompts defined by the stakeholders defining the AI agents’ simulations. In this sense, AI agents in the sandbox serve as an exploratory and ancillary tool for negotiations and decisions on how much and what type of automation, prediction, or synthetic content we feel comfortable to integrate in our policy processes.

2. Prompts, synthetic data, and AI agents as tools of public engagement

GAI’s reliance on natural languages guides the model’s outputs via the so-called ‘prompts’ thereby enabling public participation in the development, design, and regulation of AIs results. Prompts are hybrid instructions ‘given to an LLM to enforce rules, automate processes, and ensure specific qualities (and quantities) of generated output. Prompts are also a form of programming that can customize the outputs and interactions with an LLM’ (White et al., 2023). Prompts thus allow users of models to also become stakeholders and even regulators that can ‘speak’ directly to the AI system and translate between the machine’s rules and structure, personal values, agendas, and societal norms or regulations. Prompts simply connect the acts of programming, regulating (deciding on values and goals), with speaking in our natural (common) language. By co-designing prompts with other stakeholders, we can combine decisions on the uses of the models with oversight of the new technology and negotiate various stakes.

Synthetic data and AI agents generated via prompts have an increasing ability to replicate complex demographic behaviors and even individual identities, as discussed in recent scholarship (Argyle et al., 2022; Gao et al., 2023; Park et al., 2023; Shen et al., 2023). To avoid the danger of such synthetic content manipulating stakeholders (Buchanan et al., 2021; Campbell et al., 2021; E. Nagoudi et al., 2020), we have to develop practices that enable stakeholders to take part in the simulations and define their voice over the prompts and AI agents. Since GAI’s synthetic content is increasingly influencing policy (Floridi, 2023), we have to shift our focus from the epistemological issues concerning models (asking whether AI models are neutral, transparent, or ‘de-biased’) to a fundamentally political one: How prompts could support stakeholders to participate in the design, regulation, and evaluation of the emerging infrastructures?

To respond to this challenge, we experimented with co-designing prompts used for simulations of stakeholder negotiations. These unique and hybrid forms of policy and design experiments explored the potential of GAI for public consultation and stakeholders’ negotiations by using co-designed AI agents to analyze, discuss, and rewrite passages from the European
Union Artificial Intelligence Act drafts (EU AI Act). Our pilots from May – June 2023 and continuing experiments in 2024 use the GPT4 model (in few instances also 3.5) via ChatGPT interface, but also Python scripts using Langchain, and Guidance frameworks, to test how different prompts generate relevant content and enable AI agents to interact in the simulations1.

Our pilots focused on the co-design of the prompts – how stakeholders negotiate, test, reflect, and blend the synthetic and real interactions in what we describe as a proposal for an exploratory sandbox. GAIs’ effectiveness in enhancing stakeholders’ political agency and representation directly depends on how we interpret and trust the generated demographic and behavioral data. By letting stakeholders design and then interact with the synthetic data and content, we believe we can experience and define the appropriate role of AI agents within the policymaking processes. In policy terms, this process can function as a novel form of regulatory sandbox. Based on our experience, we believe that synthetic data, content, and agents can enhance conventional modes of civic engagement, public discourse, and participation. We predict that prompting could serve as a form of ‘communicative action’ (Habermas, 1991) or a dialogue and ‘fusion of horizons’ (Gadamer, 2013) that can help us define our public interest in an age saturated in synthetic media and content.

3. EU AI Act synthetic agents pilot

To test how AI agents can serve stakeholder negotiations in a potential regulatory sandbox, our team collaborated with the Tel Aviv hackerspace and the Design and Policy Lab at Bar Ilan University, from where we recruited participants and developers. From May to June 2023, we co-designed and tested several AI agents in two pilots. While the first pilot used four agents to simulate a mock trial (two lawyers, judge, and expert witness in a mock trial of a Robot Chess AI service) (Kera, 2023)2, the later test worked with AI agents representing open source stakeholders and activists who are marginalized in the process of drafting the EU AI Act. We prompted the AI agents to analyze and rewrite the EU AI Act amendments to support the open-source agenda and interest of a specific group of open-model activists that demand regulation with strong anti-trust focus.

We used ChatGPT but also Python scripts to gain better control of the prompts and to embed more recent texts (EU AI Act) and automate the interaction between the AI agents. The prompts for the agents used so called ‘Persona Pattern’ that tells the model to ‘Act as person X and Provide outputs that persona X would create’ (White et al., 2023) in a given interaction with another agent or when confronted with the text that the agent was supposed to rewrite and defend its interests and agenda.

In the case of the EU AI Act June 2023 draft, the AI agents captured and reacted to the effects of a regulatory measure that supported the interests of the big AI players and monopo-

1 The explorations are documented on the Denisa Reshef Kera’s Github page https://github.com/anonette
lies. The agents specifically focused on the amendments made in June 2023 that define whole new regulatory burdens for small developers interested in open models. The contentious Recital 12a-c, Article 2(5e), and Article 28(b) ³ created a controversy and challenged the whole open-source community and digital rights activists. If accepted without any change, these passages would have imposed financial burden with time-intensive regulatory demands that would hinder collaborative efforts in the development of open-source AI technologies (Jernite, 2023).

To include these marginal and missing voices of the open-source stakeholders, we defined AI agents that will defend their agendas. Then we asked such AI agents to analyze the Act and rewrite the problematic passage(s). For example, we used a following prompt over a Python script that communicated with the GPT 4 model after testing it also on ChatGPT:

"You are a representative from a non-profit, open source R&D organization that believes that democratization of technology ensures better innovation and governance. Your mission is to champion open-source agenda, open science, and open culture practices that empower everyone to build on past innovations and to collaboratively push the boundaries of current technological advancements. You reject the notion that only large corporations can lead in AI development and governance. You advocate open-source models and open APIs, which lower the costs and provide a spectrum of AI solutions aligned with various values."

After checking that the model understood its ‘role,’ we used a prompt describing how an official comment on the EU AI Act draft should look like (Annex 1). In the final stage, after defining the role and the task, the synthetic AI agent was asked to use these instructions on a concrete passage of Article 28 b, part 2, a and b that describe obligations of the provider of a foundation model (Annex 2). Our stakeholder-defined synthetic AI agent identified what was missing in the current proposal and rewrote the EU AI Act passage to support its open-source values and agendas. It identified that in the given draft it was not clear what ‘appropriate,’ ‘independent,’ and ‘foreseeable risk’ mean and how they will affect its interests. The agent also proposed to redefine the Article so it would clearly mention ‘community involvement in defining foreseeable risks’ (Annex 3).

The rewritten passage focused on ‘community involvement’ and thereby challenged the original agenda which emphasized risk-based assessments. Eventually it proposed a more community and participatory approach, even if we did not include any words about political agency in the prompts. According to the synthetic AI agent representing the open-source activist, we need to focus on ‘community-reviewed design testing and analysis,’ ‘a diverse panel of certified independent experts,’ as well as on ‘making documentation of non-mitigable risks publicly,’ which are all original ideas generated through the test that does not appear in any of the drafts (Annex 4). Based on this experience and feedback from the synthetic agent, we asked it to define a set of recommendations for an experimental and

participatory regulation of AI that we could implement in the exploratory sandbox for better governance of AIs. The open-source AI agent-activists proposed several changes:

1) Inclusive Definitions: Revise the EU AI Act to encompass a broader, more inclusive definition of 'public' and 'citizens', ensuring that all segments of society, especially marginalized groups, are represented in the whole policy process.

2) Stakeholder Engagement: Develop platforms that utilize AI technologies to actively engage stakeholders in policymaking. This can be achieved through AI-driven simulations, feedback systems, and participatory platforms.

3) Transparency and Accountability: Ensure that the development and deployment of AI technologies are transparent. Open-source models and community-reviewed designs can play a pivotal role in this.

4) Education and Awareness: Launch initiatives to educate the public about AI technologies, their potential benefits, risks, and the importance of their active participation in shaping AI policies.

5) Collaborative Regulation: Encourage collaborations between tech developers, policymakers, and the public. Such collaborations can lead to regulations that are both technologically sound and democratically aligned.

The last point presents an original proposal although it was generated via an AI agent representing the interests of our specific stakeholder (open-source activist). In the next step (December 2023 and January 2023) we adopted this recommendation and employed several synthetic AI agents to simulate more complex processes of negotiation between the proponents of the closed models (monopoly), open-source activist, and regulators⁴. We are also experimenting with an idea to check what happens when a certain stakeholder is missing and show how exclusion or inclusion of voices and agendas might change the results of such simulations.

While the pilot showed that the AI agent has a potential to rewrite the regulation and propose original ideas mirroring its interests and agenda, the limits are still numerous. They concern not only content hallucinations and hidden bias, but also the research workflow. We need to define a better process of coding and interpreting the generated data (we tested how models interpret and code the data and compared it with our manual results). Another issue is how to define when the model should stop the simulations, whether we should include a stop condition in the interaction between the AI agents and what rules to set up for the simulation. Equally important is the issue of how to present, enact, and show the simulation in a way that would enable public engagement (possibly as a theater play or opportunity to receive more feedback).

⁴ We appropriate an existing AI agent simulation framework on Langchain for our AI regulation simulation

https://github.com/anonette/GPTeam
4. Experimental and participatory sandbox saving political agency

The experiment with AI agent simulations for public consultations so far shows that synthetic agents are capable of representing the stakeholders (such as proponent of open APIs and open-source models in the EU AI Act drafts negotiations). In this scenario, different stakeholders define their interests and agendas over prompts and then build AI agents producing feedback in a public consultation process. They can also let the AI agents interact and follow the outcomes of such simulations to improve their decision making, which is a process we describe as an exploratory sandbox.

In such a sandbox, stakeholders’ direct engagements with the tools they are trying to regulate supports public participation and political agency in a technological issue that combines parallel testing of the decision and the tool. The suggested format of an experimental regulatory approach is thus inspired by the concept of regulatory sandbox (Allen, 2019; Gromova, 2020; Lim & Low, 2019). While the regulatory sandbox tries to ‘cure’ regulators’ limited knowledge and expertise regarding advanced technologies, such as AI and Fintech, and allow tech companies to test their products before they are introduced into the market (Allen, 2019), our approach sets up a more exploratory and participatory goals. It is a format that welcomes a variety of stakeholders that are also invited to define the regulations and values over the prompts while testing the tool.

Regulatory sandboxes, in our opinion, should not be restricted to mitigating and managing risks and compliance but rather expand their function to enable marginalized stakeholders to take part in the decision making and drafting of regulations by directly experiencing the technology (Kera, 2021). A policy that supports innovation along with accountability, responsibility and trustworthiness of AI systems requires a more inclusive and participatory approach that will involve diverse stakeholders alongside the regulators and businesses. We need to enable stakeholders with different agendas to explore the AI services not only as objects of regulatory care but also as means, which could help them familiarize and understand the risks and opportunities. In this sense, the exploratory sandbox reacts to the present erosion of boundaries between technology and society and provides a space to support inclusive approach for the future socio-technological transformation.

The proposed model of a participatory and experimental policy process via AI agents offers a direct engagement with the public that we tested in our pilot on rewriting the EU AI Act draft. We showed how the public can use the AI agents’ ability to translate any interests and values into drafts and bureaucratic or legal lingo, thus helping different stakeholders to familiarize and understand the complex legal documents and issues. Such an exploratory sandbox model would enable policymakers to promote responsible innovation through a more direct, inclusive, transparent, and accountable AI ecosystem.

We initiated our exploratory sandbox in Israel and Czech Republic via an informal collaboration with local regulatory bodies, but also a hackerspace in Tel Aviv, and an academic institution focused on public engagement (Design & Policy lab at Bar Ilan University). The pilot showed that we can use this format to support stakeholders in rewriting regulatory docu-
ments and proposing anticipatory governance of the models through stakeholder negotiations and experiments over the prompts. The exploratory and experimental approach can also help companies to transition their products from R&D labs to not only the market but also public sphere through consultative and voluntary participation in the sandbox, which includes citizens as users as well as stakeholders. This form of AI agent simulations extends the meaning of regulation from compliance to negotiation and agreement that uses the potential conflicts as opportunities for engagement that transform the challenges into valuable learning experiences.

5. Conclusion

The experimental integration of synthetic data and AI agents into policymaking processes makes visible the Janus face of AI technologies: they can be tools for manipulation as much as tools promoting democratization. It is a manifestation of multistability according to which a technology can have different meanings to different users at different contexts (Wellner, 2020). This ‘multiple use’ makes it crucial to enhance the political agency of various stakeholders over design and policy experiments rather than to diminish it with promises of responsible, trustworthy etc. Als. Synthetic AI agents as an example of ‘governance in silico’ strategy can help different stakeholders to actively address conflicts and shape the outcomes via simulations. By fostering public engagement with technology over AI agents, we support citizens’ political agency and promote a more hands-on, participatory approach to governance that can evaluate and challenge the prevailing dominant discourse on technology and innovation. This stands in contrast to prevailing top-down, risk-centric approaches that support monopolies and call for stringent oversight or "FDA for algorithms" driven by apocalyptic and transhumanist fear of Artificial General Intelligence. ‘Governance in silico’ is thus a means to support political agency as an alternative to the technocratic calls for governance based on automation or prediction. Rather than using AI synthetic agents to sway public opinion, the AI agents empower diverse individuals and groups to legitimize their voices and interests. Such agents can allow different communities to tailor the technology and regulation to their unique needs and objectives, facilitating meaningful dialogue and new ideas. AI-generated simulations emulate stakeholders’ interactions and help citizens to not only gain voice but also firsthand experience with the tool and adapt it according to their needs. Our participatory and experimental regulatory perspective also draws inspiration from hacktivism, grassroots movements in open source and free software, and the broader push to democratize technology and knowledge. This approach positions citizens as active stakeholders, transcending their traditional role as mere end-users or natural persons that only need to be protected. To ensure that AI technologies align with democratic values, it’s imperative to broaden participation and include more experimentation.

6. References

D’ignazio, C., & Klein, L. (2020). *Data Feminism.* MIT.

Jernite, Y. (2023). AI Policy @ Open ML Considerations in the EU AI Act. https://huggingface.co/blog/eu-ai-act-oss

About the Authors:

Denisa Reshef Kera, PhD., is a Senior Lecturer at Bar-Ilan University (BIU), where she established a Design & Policy lab for experimental governance of emerging technologies. She is also the alternate AI national expert appointed by the Ministry of Foreign Affairs of the Czech Republic to represent the country in the Global Partnership for Artificial Intelligence (GPAI).

Eilat Navon (Ms.) is a PhD. Student in the STS Department in Bar-Ilan University (BIU), researching the participation of publics in constructing policies in disruptive innovation. Her research interests are socio-technological boundaries and co-dependencies, regulatory institutions, public participation design in disruptive innovation.

Galit Wellner, PhD., is an Assistant Professor at Holon Institute of Technology (HIT), studying the inter-relations between humans and technologies. She is a board-member of the Society of Philosophy and Technology and academic consultant for SinergAI, the forum for AI Regulation.

František Kalvas, PhD., is an Assistant Professor at the University of West Bohemia (UWB), Faculty of Social Science. As a sociologist and interdisciplinary researcher with an interest in anthropology, he specializes in computational social sciences and agent simulations. He also works as a Chief Data Analyst at the rectorate of UWB.
7. Annexes

Annex 1.
Prompt describing what the AI agent representing the stakeholder is supposed to do:

‘Please use this step-by-step guide to effectively amend and propose changes to a given EU Regulation passage that reflect your stakeholder interest, values and agenda:

Initial Review:
Read the current regulation passage in full.
Highlight and note down any unclear terms or problematic areas.

Gap Identification:
Ask: What problem or inconsistency does the current passage present?
List down the issues you’ve identified.

Define:
Define how other jurisdictions or EU regulations address similar issues.
Define how stakeholders with similar agenda address similar issues

Re-write the problematic sections of the passage.
Ensure your language is clear and aligns with the overall tone of the regulation.

Justify Changes:
Write a brief paragraph explaining the reasons for your proposed changes.
Outline expected benefits and potential drawbacks of your amendment.

Compliance Check:
Review the broader EU legal framework to ensure your changes don’t introduce conflicts.
Consider seeking a legal expert’s opinion on your draft amendment.’

Annex 2
Prompt on focusing on the EU AI passage that the agent was supposed to rewrite:

‘Apply these steps to propose amendments that will reflect your stakeholder agenda on Article 28 b describing obligations of the provider of a foundation model, specifically on passage 2.
For the purpose of paragraph 1, the provider of a foundation model shall:
a) demonstrate through appropriate design, testing and analysis the identification, the reduction and mitigation of reasonably foreseeable risks to health, safety, fundamental rights, the environment and democracy and the rule of law prior and throughout development with appropriate methods such as with the involvement of independent experts, as well as the documentation of remaining non-mitigable risks after development
(b) process and incorporate only datasets that are subject to appropriate data governance measures for foundation models, in particular measures to examine the suitability of the data sources and possible biases and appropriate mitigation.’
Annex 3
ChatGPT(4) results:

Initial Review:
Upon reading the current regulation passage in full, the following terms and areas seem unclear or problematic:
1. "appropriate design, testing and analysis"
2. "reasonably foreseeable risks"
3. "appropriate methods"
4. "independent experts"
5. "appropriate data governance measures"
6. "suitability of the data sources"

Gap Identification:
The problems or inconsistencies in the current passage include:
1. Lack of clarity on what constitutes "appropriate" in various contexts.
2. Ambiguity surrounding the term "reasonably foreseeable risks."
3. No clear definition or criteria for "independent experts."
4. Absence of specifics on "data governance measures."

Define:
In other jurisdictions or EU regulations:
1. "Appropriate" is often defined with clear criteria or standards.
2. "Independent experts" usually have a set of qualifications or certifications.
3. Data governance measures are often detailed with specific guidelines.

Stakeholders with a similar open-source and democratization agenda might:
1. Emphasize transparency in design, testing, and analysis.
2. Advocate for community involvement in defining "foreseeable risks."
3. Push for open-source data governance measures.

Annex 4
EU AI act rewritten passage by the synthetic agent and its reasoning:

Re-write:
2. For the purpose of paragraph 1, the provider of a foundation model shall:
 (a) demonstrate through transparent and community-reviewed design, testing, and analysis the identification, the reduction, and mitigation of risks, both immediate and long-term, to health, safety, fundamental rights, the environment, and democracy and the rule of law. This should be done prior and throughout development with methods that involve a diverse panel of certified independent experts. Documentation of non-mitigable risks after development should be made publicly available.
 (b) process and incorporate only datasets that adhere to open-source data governance
standards for foundation models. This includes rigorous examination of the data sources for biases and a commitment to continuous bias mitigation.

Justify Changes:
The proposed changes aim to bring greater transparency, inclusivity, and clarity to the regulation. By emphasizing "transparent and community-reviewed design," we advocate for a democratized approach to AI development. The inclusion of "a diverse panel of certified independent experts" ensures a broad spectrum of expertise and perspectives. Making documentation of non-mitigable risks publicly available aligns with our open-source agenda. Lastly, adhering to "open-source data governance standards" ensures that data handling is transparent and accountable.

Expected benefits:
1. Greater transparency in AI development.
2. Inclusivity through community involvement.
3. Clearer guidelines for data governance.

Potential drawbacks:
1. Increased time and resources for community reviews.
2. Potential resistance from entities preferring proprietary models