Abstract
This paper addresses the teaching of emerging technologies to design students, using ‘printed electronics’ as an example as it recently became viable to mass manufacture and is ready for use in designs. Printed electronics is introduced as a disruptive technology, and approaches employed in knowledge transfer to industrial/product designers is reviewed. An overview of the technology is provided; the printing processes; material properties; a comparison with conventional electronics; and product examples are identified. Two case studies illustrate approaches for knowledge transfer to student designers. The assessment criteria and design outcomes from the case study projects are reviewed and future/new approaches proposed. The paper concludes that there is a need to develop a thorough knowledge transfer strategy for printed electronics to designers, informed by case studies and extending beyond simply showing examples of existing technology. This is necessary for future proofing both in technological advances and designing for the future.
Keywords
printed electronics, product design, design education, communication approaches
DOI
https://doi.org/10.21606/drs.2016.151
Citation
York, N., Southee, D., and Evans, M. (2016) The Future o f Product Design Utilising Printed Electronics, in Lloyd, P. and Bohemia, E. (eds.), Future Focused Thinking - DRS International Conference 2016, 27 - 30 June, Brighton, United Kingdom. https://doi.org/10.21606/drs.2016.151
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
The Future o f Product Design Utilising Printed Electronics
This paper addresses the teaching of emerging technologies to design students, using ‘printed electronics’ as an example as it recently became viable to mass manufacture and is ready for use in designs. Printed electronics is introduced as a disruptive technology, and approaches employed in knowledge transfer to industrial/product designers is reviewed. An overview of the technology is provided; the printing processes; material properties; a comparison with conventional electronics; and product examples are identified. Two case studies illustrate approaches for knowledge transfer to student designers. The assessment criteria and design outcomes from the case study projects are reviewed and future/new approaches proposed. The paper concludes that there is a need to develop a thorough knowledge transfer strategy for printed electronics to designers, informed by case studies and extending beyond simply showing examples of existing technology. This is necessary for future proofing both in technological advances and designing for the future.